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LONG-TERM GOALS:

To understand the dynamics of nonlinear internal waves in littoral regimes, including the processes of
generation, propagation, interaction, and dissipation; to formulate analytical models of these processes
that have useful predictive skill; and to transition the models to Navy operational interests.

OBJECTIVES

A. Relate generation processes to tidal and meteorological forcing near bathymetric features.
B. Establish the spatial and temporal variability in propagation of solitons on the shelf, as

evidenced by the character of the phase fronts of the wave packets, including their refractive control and
advection by and interaction with tidal currents.

C. Study soliton-soliton and soliton-current interactions (a) by analyzing intersections of pairs of
wave packets for the phase shifts and relating them to theory, and (b) by solving the eigenvalue equation
for the vertical structure function in the presence of background flows. 

D. Characterize variations in the separation, speed, direction, and number of individual solitons
as they propagate up the continental shelf.

E. Establish the area of disappearance of soliton signatures in shallow water; relate this
phenomenon to what is known of the stratification, mixing,  and turbidity in that region.

F. Use nonlinear soliton theory to derive an analytical model for the waves.

APPROACH

The approach has been to use a combination of in-situ field data and satellite imagery, especially
synthetic aperture radar (SAR), together with analytic theories for solitons, to understand the nonlinear
dynamics. Participation in the ONR-sponsored 1995 Shallow Water Acoustics in Random Media
(SWARM) experiment provided a rich source of quantitative field data on internal waves over the
continental shelf off New Jersey.  In addition, monitoring soliton results from Gibraltar and from Knight
Inlet gives alternative sources of information on generation and propagation near a sill. Also, acquisition
of satellite imagery from a variety of locations around the world allows one to glean some overview of
the incidence of the phenomenon in general. Such data show that solitons are ubiquitous in stratified
coastal oceans and are occasionally seen in deep water; presumably the latter result from formation over
shallow topography and propagation out into the open sea.



WORK COMPLETED

A. In cooperation with workers from the Naval Research Laboratory and the Woods Hole
Oceanographic Institution, data from SWARM have been reduced and analyzed for internal wave
characteristics.  Such data include thermistor time-series, ADCP records, CTD and XBT casts, acoustic
flow-visualization methods, ship’s radar PPI images, and SAR images from the ERS-1 satellite.  A
major paper has been published (Apel et al., 1997) that includes both acoustic and oceanographic
information. 

B. An analytic model of soliton packets that was found in the Soviet plasma physics literature
has been adapted to the case of a stratified, bounded medium.  Because it incorporates the Jacobi elliptic
function dn(x, s), it has been termed the “dnoidal” model in analogy to the well-known cnoidal solution
to the Korteweg-De Vries equation, cn(x, s).  The model reproduces the major characteristics of
solitons observed in nature, including finite packet length, continual lengthening of the packets and
number of solitons in them, varying amplitudes and wavelengths within the groups, and a long-term
depression of the thermocline in the wake of the packets. Additional modifications to the model, as
described below, allow it to mimic entire semidiurnal cycles of internal soliton/tide activity as sequences
of undulatory bores, or “solibores” (Henyey et al., 1995).

C. A model for the vertical structure function giving the variation of soliton amplitude with
depth has also been formulated in terms of a modified Taylor-Goldstein equation having a dissipative
right-hand-side similar to the Orr-Sommerfeld equation. The existence of unstable solutions has been
demonstrated for shear flows having critical levels; the criteria for such instability has been shown to
meet the conditions for “over-reflection” as given by Lindzen and associates (Lindzen, 1988).

D. Analysis of SAR images for soliton properties has been carried out for several images and the
resultant profiles compared with field data.

RESULTS

The soliton model is in part an adaptation to internal waves of the little-known solution of Gurevich and
Pitaevskii (1973), originally derived for collisionless shock waves in plasma.  The Jacobi elliptic solution
for the amplitude, 0(r, z, t) is modified by multiplying it by (1) a second function I(r, t) describing the
highly nonlinear internal tidal bore and (2) by the vertical structure function, Wk (z), which is obtained
from solutions to the modified Taylor-Goldstein equation mentioned above.  The complete two-
dimensional solution is thus written 

where the summation is over the vertical eigenmodes. Attenuation is incorporated via the exponential
factor.  The nonlinear parameter s is given by Gurevich and Pitaevskii in terms of an implicit function
that describes its variation throughout the length of a wave packet: 0 # s # 1, with full nonlinearity
occurring at the front of the group and decaying to linear behavior at the rear.  This variation directly
gives the variable wavelengths of the individual solitons within the packet via an expression for the
wavelength, 8 = 4 K(s)/k0 , where k0 is the linear wave number at the rear of the packet (also related to



Figure 2. Dnoidal wave packets propagating up the continental shelf after formation at the shelf break.

the width of each individual soliton).  However, any other reasonable specification of the nonlinear
parameter may be used, including ones derived experimentally. Thus the model can be tuned to actual
data, if desired, by observing the wavelengths within a packet.

An example of three cycles of soliton packets, each separated by one semidiurnal period, is illustrated in
Fig. 1 for conditions extant during the SWARM period. The waveforms are shown as displacements of
a constant density surface; in this case, the recovery of the pycnocline following the passage of the
solitons is given by the relation I(r, t) = !{1 + tanh[(r ! c0 t)/L]}, where c0 is the long-wave phase speed
and L is a horizontal scale. Parameters have been somewhat tuned to reproduce observed packets.

The relationship governing the vertical structure function is a combination of the Taylor-Goldstein and
Orr-Sommerfeld equations. While the usual soliton solution assumes infinite wavelength to be the case, 
the finite lengths observed in nature and their decay to short-wavelength linear states at the rear of the
packet require the use of a more complicated version with k … 0. In addition, the possibility of shear-
flow instability for slow internal waves moving in background currents necessitates the inclusion of such
flows in the formulation.  The presence of damping mechanisms such as eddy viscosity brings in a lossy
right-hand side. The equation to be used is thus:



Figure 5. Real and imaginary parts of vertical wave
number. Unstable growth is indicated for k = 2.5

Away from critical layers in the fluid (T/k = U0),
the right-hand side has the simple effect of making
the frequency T complex with a wave-number-
dependent loss term: T = Tr + iTi(k). Growing
waves must  thus overcome whatever dissipation
(represented by eddy viscosity A) before becoming
unstable.  

On the left-hand side one can consider the quan-
tity in the curly braces to be the squared vertical
component, m2 of the wave vector, which itself
varies in z.  By inspecting the sign of the imagi-
nary part of m, the presence or absence of  insta-
bility can be discerned without actually solving the
differential equation for complex eigenfunctions
and eigenvalues.  By using models for N(z) and
U0(z) and a model dispersion relation,  T = T(k),
the vertical dependence of m can be investigated for a variety of buoyancy and flow profiles. This has
been done and the results of Lindzen et al. (1988) were verified: Unstable conditions arise when
upward-propagating internal waves tunnel through an evanescent region into a propagating region
wherein simultaneously the Richardson’s number Ri # 1/4. For nominal oceanic shear flows, it is slow,
short internal waves that are first affected. Figure 2 shows the vertical wave number dependence for
unstable conditions wherein the phase speed of the waves matches the current speed near the surface,
resulting in a complex wave number component with a negative imaginary part (Fig. 2, right).  In the
region of mi # 0,  Ri # 0.25 as well and instability results.

A SAR image of a large soliton packet being radiated from the Strait of Gibraltar is shown in Fig.3.
(The image is in corrected geographical coordinates.) It is known (Apel et al., 1988) that variations in
relative radar backscatter intensity such as observed in the radar image are related to the product of
variations in the horizontal strain rates of the soliton currents at the surface and the short-surface-wave
relaxation time, J, viz: )Fo /Fo . 4.5 (Mu/Mx)o J. For 2-dimensional flows, the continuity equation and the
linearized kinematic boundary condition combined with the cross section data give

Thus if one calculates the vertical structure function Wk (z) from CTD data and measures the wave-
length and its variations from image data, it is possible to estimate the amplitude and the entire
subsurface hydrodynamics using this simple theory. From preliminary analysis, the method appears to
give amplitudes to well within  a factor of two. Further work will be done on this problem.

IMPACT/APPLICATIONS
This work finds immediate application to ocean acoustics in the littoral zone. From SWARM results, it
appears that solitons on the continental shelf can lead to acoustic intensity fluctuations of order ± 10 dB



Figure 6. Large soliton packet radiating from Gibraltar in
April 1996. Data from SAR on ERS-1.

over times of the order of internal wave peri-
ods. By combining satellite or aircraft imagery
with historical CTD/STD/XBT data, it seems
possible to estimate the level of solitary inter-
nal wave fluctuations in other regions of the
world without the direct physical probing that
is usually required. Another application is to
nutrient and larval transport; large directional
flows and bottom interactions accompany the
solitons and these have impacts on the biolog-
ical state of affairs where they occur.

TRANSITIONS

Acoustic modelers in Navy laboratories and
academia are using the model to calculate
sound propagation through the internal wave
field; usually that field is taken as a combination of deterministic solitons and a random collection of
linear waves characterized by modified Garrett-Munk-like spectra.

RELATED PROJECTS

This project is closely related to the ONR-sponsored programs in Mediterranean outflow through the
Gibraltar Strait (P. Worcester et al.) and the solibore project in Knight Inlet, Canada (D. Farmer et al.).
It is also of relevance to ongoing shallow water acoustics studies in the U.S. and abroad. 
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